Calculus II, Section 11.8, #36
Power Series

The function A defined by
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is called an Airy function after the English mathematician and astronomer Sir George Airy (1801-1892).

(a) Find the domain of the Airy function.

If we can write the function as a power series, then the domain of the function is the interval of

convergence. Note that
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Since the first term doesn’t seem to fit the pattern of the other terms, we’ll treat this as
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We apply the Ratio Test to the sum
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Thus the series is convergent for all 2 and the domain is (—o00,00). (Note that the “1+” does not affect

the convergence nor the domain because it does not involve z in any way.)
(b) Graph the first several partial sums on a common screen.

The partial sums are
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and so on.
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(¢c) If your CAS has built-in Airy functions, graph A on the same screen as the partial sums in part (b)

and observe how the partial sums approzimate A.

After lengthy experiments, we were not able to get WolframAlpha to generate a graph of the function.
The program has a couple of built-in functions that are listed as Airy functions, but neither of them
matched our work from parts (a) or (b).



